Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Environment and planning. B, urban analytics and city science ; 2022.
Article in English | EuropePMC | ID: covidwho-1877469

ABSTRACT

Since the first confirmed case was reported in January 2020, Hong Kong has experienced multiple waves of COVID-19 outbreaks. Recent literature has explored the spatial patterns of disease incidence and their relationships with the built environment and demographic characteristics. Nonetheless, few studies aim at the comparative patterns of different epidemic waves occurring in the same spatial context. This study analyses spatial patterns of the third and fourth COVID-19 epidemic waves and then evaluates the spatial relationship between case incidence and built environment and socio-demographic characteristics. By collecting local-related cases, this study incorporates a two-fold analytical strategy: (1) Using rank-size distribution and log-odd ratio to depict the spatial pattern of COVID-19 incidence rates;(2) through global and local regression models, investigating incidence’s associations with the urban built environment and socio-demographic characteristics. The results reveal that the two different epidemic waves have far distinct spatial tendencies to their infection risk factors, reflecting location-specific associations with the built environments and socio-demographics. Collectively, we discover that the third and fourth COVID-19 waves are likely associated with residential context and urban activities, respectively. Practical implications are discussed that would be of interest to policymakers and health professionals.

2.
Int J Environ Res Public Health ; 18(14)2021 07 14.
Article in English | MEDLINE | ID: covidwho-1314641

ABSTRACT

With the COVID-19 vaccination widely implemented in most countries, propelled by the need to revive the tourism economy, there is a growing prospect for relieving the social distancing regulation and reopening borders in tourism-oriented countries and regions. This need incentivizes stakeholders to develop border control strategies that fully evaluate health risks if mandatory quarantines are lifted. In this study, we have employed a computational approach to investigate the contact tracing integrated policy in different border-reopening scenarios in Hong Kong, China. Explicitly, by reconstructing the COVID-19 transmission from historical data, specific scenarios with joint effects of digital contact tracing and other concurrent measures (i.e., controlling arrival population and community nonpharmacological interventions) are applied to forecast the future development of the pandemic. Built on a modified SEIR epidemic model with a 30% vaccination coverage, the results suggest that scenarios with digital contact tracing and quick isolation intervention can reduce the infectious population by 92.11% compared to those without contact tracing. By further restricting the inbound population with a 10,000 daily quota and applying moderate-to-strong community nonpharmacological interventions (NPIs), the average daily confirmed cases in the forecast period of 60 days can be well controlled at around 9 per day (95% CI: 7-12). Two main policy recommendations are drawn from the study. First, digital contact tracing would be an effective countermeasure for reducing local virus spread, especially when it is applied along with a moderate level of vaccination coverage. Second, implementing a daily quota on inbound travelers and restrictive community NPIs would further keep the local infection under control. This study offers scientific evidence and prospective guidance for developing and instituting plans to lift mandatory border control policies in preparing for the global economic recovery.


Subject(s)
COVID-19 , Quarantine , COVID-19 Vaccines , China , Contact Tracing , Hong Kong , Humans , Models, Theoretical , Policy , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL